nur farhana mohd zaidi
0525368
biomedical science

Assignment 6
1.
During your laboratory class, you have created multiplots (one figure containing several plots) and animations using these plots. Using your own function, create at least one set of multiplot (static) and animation. Use as many options as possible to make your plot look like textbook quality plots.

> restart;
> with (plots):
Warning, the name changecoords has been redefined

plot (cos(theta)+2*sin(theta),theta=0..2*Pi);

[image: image1.png]heta

> y:=A*cos(f*theta)+B*sin(f*theta);
[image: image2.wmf] :=

y

 +

A

(

)

cos

f

q

B

(

)

sin

f

q

> subs(A=1,B=2,f=1,y);
[image: image3.wmf] +

(

)

cos

q

2

(

)

sin

q

>eq1:=plot(subs(A=1,B=1,f=1,y),theta=0..2*Pi,colour=red,legend="f=1",thickness=2):eq1;
[image: image4.png]=1

>eq2:=plot(subs(A=1,B=1,f=2,y),theta=0..2*Pi,colour=blue,legend="f=2",thickness=2):eq2;

[image: image5.png]05

theta

=2

>eq3:=plot(subs(A=1,B=1,f=3,y),theta=0..2*Pi,colour=magenta,legend="f=3",thickness=2):eq3;

[image: image6.png]05

eta

=3

>eq4:=plot(subs(A=1,B=1,f=4,y),theta=0..2*Pi,colour=green,legend="f=4",thickness=2):eq4;

[image: image7.png]05

heta

=4

 >display({eq1,eq2,eq3,eq4});

[image: image8.png]

2.
Your artistic skills: Draw a unique picture using Maple.

> restart;with(plots):
Warning, the name changecoords has been redefined

>plot([sin(4*x),cos(2*x),x=0..2*Pi],thickness=2,color=brown,axes=NONE);
[image: image9.png]

it is sand clock.

>plot([cos(2*x),sin(4*x),x=0..50],thickness=3,color=blue,axes=none);
[image: image10.png]

it is a tie bow.

3.
Make two unique animations in 2D and 3D.

Give names to these pictures. Publish these pictures and the animations in your home page along with the details, such as the equations that are used to create the animations.

animation 2D

> with(plots):
> animate(2*sin(x+y)+3*cos(x-y),x=-1..8,y=0..8,color=magenta,thickness=5,frames=20);

[image: image11.png]

it is a wave of sea.

animation 3D
> restart;
> with(plots):
> animate3d(sin(s*t)*2*sin(t^2)+cos(4*s*t*phi),s=0..2*Pi,t=0..2*Pi,phi=0..4*Pi,style=patch, frames=20, coords=spherical, title="dandelion");
[image: image12.png]dandelion

4.
Explain the use of if, do and proc maple programming statements using your own examples
If
The selection (conditional) statement and operator

Calling Sequences

· Selection Statement
 if <conditional expression> then <statement sequence>
 | elif <conditional expression> then <statement sequence> |

 | else <statement sequence> |

 end if

· (Note: Phrases located between | | are optional.)

· if operator
 `if`(conditional expression, true expression, false expression)

Description

· The selection statement causes the statement sequence in the selected branch (if any) to execute.

· The construct elif conditional expression then statement sequence can be repeated any number of times. The keyword elif stands for else if. The short form avoids the requirement for multiple closing end if delimiters.

· A conditional expression is any Boolean expression formed by using the relational operators (<, <=, >, >=, =, <>), the logical operators (and, or, not), and the logical names (true, false, FAIL).

· When a conditional expression is evaluated in this context, it must evaluate to true or false or FAIL; otherwise, an error occurs.

· The statement sequence following else is executed if all of the conditional expressions evaluate to false or FAIL.

· The operator form of if requires three arguments and returns the evaluation of the second or third, depending on the truth value of the first. The first argument is evaluated to a boolean and, if true, the second argument is evaluated and returned. If the first argument evaluates to false or FAIL, the third argument is evaluated and returned.

· When using the operator form, the name of this function must be enclosed in back quotes (left single quotes) because it is a Maple reserved word.

· This statement has special evaluation rules in that the arguments are not evaluated if they are not required.

· Note about Nested Conditional Statements
· Statements in a Maple session are recognized in levels, determined by the nesting of conditional or repetition statements and the nesting of procedures. In particular, the top (interactive) level is level 0; statements within conditional and repetition statements are level 1, or level 2 if doubly nested, etc.

· The setting of printlevel causes the display of the results of all statements executed up to the level indicated by printlevel. By default, printlevel is initially set to 1. As a result, if statements are located inside nested loops or nested conditional statements, it may be necessary to set printlevel to a higher value in order to see the results of all the statements located in the loops or conditional statements.

· An alternative method of displaying the result of a statement that is nested inside loops or conditional statements is to use the statement in conjunction with the print command.

· For more information about displaying information, see printlevel and print.

Examples
> a := 4; b := 6;
[image: image13.wmf] :=

a

4

[image: image14.wmf] :=

b

6

> if (a > b) then a else b end if;
[image: image15.wmf]6

> 2*(Pi + `if`(a > b,a,b));
[image: image16.wmf] +

2

p

12

> x := `if`(a < b,NULL,b);
[image: image17.wmf] :=

x

> if FAIL then 4 else 6 end if;
[image: image18.wmf]6

Do
The repetition statement (for...while...do)

Calling Sequence
· | for <name> | | from <expr> | | by <expr> | | to <expr> | | while <expr> |

· do <statement sequence> end do;

· OR

· | for <name> | | in <expr> | | while <expr> |

· do <statement sequence> end do;

· (Note: Phrases located between | | are optional.)

Description

· The repetition statement provides the ability to execute a statement sequence repeatedly, either for a counted number of times (using the for...to clauses) or until a condition is satisfied (using the while clause). Both forms of clauses can be present simultaneously.

· If the from or by clause is omitted, then the default value from 1 or by 1, respectively, is used.

· The tests to expr and while expr are tested at the beginning of each iteration. If neither clause is present, then the loop will be infinite. Exit from such a loop is possible by using the break statement, a return from a procedure, or the quit statement.

· The expr in the while clause is a Boolean expression which must evaluate to true or false; otherwise, an error occurs.

· Use of the in expr clause causes the index variable to take as values the successive operands of the specified expression expr as would be determined via the op function. The exception to this rule is when expr is an expression sequence. In this case, the index variable takes as values the operands as determined by op([expr]).

· Arguments to the in or to clauses are evaluated only once at the beginning of the loop and not after every iteration.

· Note about Nested Loops
· Statements in a Maple session are recognized in levels, determined by the nesting of conditional or repetition statements and the nesting of procedures. In particular, the top (interactive) level is level 0; statements within conditional and repetition statements are level 1, or level 2 if doubly nested, etc.

· The setting of printlevel causes the display of the results of all statements executed up to the level indicated by printlevel. By default, printlevel is initially set to 1. As a result, if nested loops are being used, it may be necessary to set printlevel to a higher value in order to see the results of all the statements in the loops.

· An alternative method of displaying the result of a statement that is nested within loops is to use the statement in conjunction with the print command.

· For more information about displaying information, see printlevel and print.

Examples
1) Print even numbers from 10 to 100.

> for i from 10 by 25 to 100 do print(i) end do;
[image: image19.wmf]10

[image: image20.wmf]35

[image: image21.wmf]60

[image: image22.wmf]85

2) Find the sum of all two-digit odd numbers.

> tot := 0;

for i from 55 by 5 while i < 100 do

 tot := tot + i

end do;
[image: image23.wmf] :=

tot

0

[image: image24.wmf] :=

tot

55

[image: image25.wmf] :=

tot

115

[image: image26.wmf] :=

tot

180

[image: image27.wmf] :=

tot

250

[image: image28.wmf] :=

tot

325

[image: image29.wmf] :=

tot

405

[image: image30.wmf] :=

tot

490

[image: image31.wmf] :=

tot

580

[image: image32.wmf] :=

tot

675

Proc
Procedures

Calling Sequence

 proc (argseq) local nseq; global nseq; options nseq; description stringseq; statseq end proc

 proc (argseq)::type; local var1::type1, var2::type2, ...; global nseq; options nseq; description stringseq; statseq end proc

Parameters
 argseq - the formal parameter names

 type - (optional) an assertion on the type of the returned value

 nseq - (optional) the names of local/global variables and the options in effect

 var1,var2 - (optional) the names of local variables

 type1,type2 - (optional) assertions on the types of local variables

 stringseq - description lines for the procedure

 statseq - the body of the procedure

Description
· A procedure definition is a valid expression that can be assigned to a name.

· The parenthesized argseq, which may be NULL, specifies the formal parameter names. Each parameter is a symbol followed by an optional type specifier, preceded by a double colon (::). If the type specification is supplied, Maple generates an error if arguments of the incorrect type are passed to the function. Maple also generates an error if an argument is missing, but only at the time that such an argument is first required. See procedure[paramtype] for more information.

· The closing bracket of the argseq may optionally be followed by :: and a type, followed by a ;. This is not a type declaration, but rather an assertion. If kernelopts(assertlevel) is set to 2, the type of the returned value is checked as the procedure returns. If the type violates the assertion, then an exception is raised.

· The phrases local nseq;, global nseq; and options nseq; are optional. If present, they specify, respectively, the names of local and global variables, and the options in effect.

· Local variables that appear in the local nseq; phrase may optionally be followed by :: and a type. As in the case of the return type, this is not a type declaration, but rather an assertion. If kernelopts(assertlevel) is set to 2, any assignment to a variable with a type assertion is checked before the assignment is carried out. If the assignment violates the assertion, then an exception is raised.

· The description stringseq; specifies one or more lines of description about the procedure. When the procedure is printed, this description information is also printed. Even library procedures, whose body is generally elided when printing, have their description (if any) printed.

· The op function can access eight operands of the procedure:

· op 1 is the argseq of formal parameters;

· op 2 is the nseq of local variables;

· op 3 is the nseq of options;

· op 4 is the remember table (see remember for information);

· op 5 is the description string;

· op 6 is the nseq of global variables;

· op 7 is the lexical table;

· op 8 is the return type (if present).

· Any of these operands can be null.

· If variables are undeclared, the following rules are used to determine whether a variable is local or global.

· The variable is searched for amongst the locals and globals (explicit or implicit) in surrounding procedures, starting with the innermost. If the name is encountered as a parameter, or as a local or global, that is where the variable is bound. Otherwise, each variable to which an assignment is made, or which appears as the controlling variable in a for loop, is local. All others are global. Note: A name beginning with _Env is considered an environment variable.

· Procedures have special evaluation rules (like tables) so that if the name f has been assigned a procedure then:

· f evaluates to the name f;
· eval(f) yields the actual procedure structure;

· op(eval(f)) yields the sequence of eight operands mentioned above (any or all of which may be null).

· A procedure assigned to f is invoked by using f(arguments). See parameters for an explanation of parameter passing. The value of a procedure invocation is the value of the last statement executed, or the value specified in a return statement.

· Remember tables (option remember) should not be used for procedures that are intended to accept mutable objects (e.g., rtables) as input, because Maple does not detect that such an object has changed when retrieving values from remember tables.

Examples
> lc := proc(s, u, t, v)

 description "form a linear combination of the arguments";

 s * u + t * v

end proc;
[image: image33.wmf]lc

,

,

,

s

u

t

v

proc

(

)

 :=

description

;

"form a linear combination of the arguments"

 +

´

u

s

´

t

v

end proc

> print(lc);
[image: image34.wmf],

,

,

s

u

t

v

proc

(

)

description

;

"form a linear combination of the arguments"

 +

´

u

s

´

t

v

end proc

> lc(Pi, x, -I, y);
[image: image35.wmf] -

p

x

y

I

5.
Write a Maple procedure (proc) which will accept the variable a and x to calculate a function which has a value of 2*x^2+x+a when x is in the range of -a to a, and a value of zero everywhere else. Check your procedure by calling this proc using different values of x and a.

> restart;
> P1:=proc(x,a)

description"form a linear combination of the arguments";

2*x^2+x+a

end;
[image: image36.wmf]P1

,

x

a

proc

(

)

 :=

description

;

"form a linear combination of the arguments"

 +

 +

´

2

^

x

2

x

a

end proc

> print(P1);

[image: image37.wmf],

x

a

proc

(

)

description

;

"form a linear combination of the arguments"

 +

 +

´

2

^

x

2

x

a

end proc

> P1(2,5);
[image: image38.wmf]15

> P1(4,6);
[image: image39.wmf]42

6.
Make a maplet of your own, which is different from the examples given. Use as many options as you can
> restart;
> with(Maplets[Elements]):
> MyMaplet:=Maplet([["Assalamualaikum,i'm farhana"]]):
> Maplets[Display](MyMaplet);

[image: image40.png]i Maplet (=]

‘Assalamualaikum,im farhana

> restart;
> f:=proc(x)

local z:

if x>=9 then

z:=BARR:

else

z:=PASS:

fi:

end:
> f(9);
[image: image41.wmf]BARR

> f(0);
[image: image42.wmf]PASS

> f(12);
[image: image43.wmf]BARR

> print(f);
[image: image44.wmf]proc

(

)

end proc

x

local

;

z

if

then

else

end if

 £

9

x

 :=

z

BARR

 :=

z

PASS

> f(9);
[image: image45.wmf]BARR

> f(5);
[image: image46.wmf]PASS

> with(Maplets[Elements]):
> GraderMaplet:=Maplet([

["Grader Maple"],

["Enter hour of absent"],

["Hours:",TextField['TF1']()],

TextBox['TB1'](not editable,width='50',height='5'),

[Button("Your status",Evaluate('TB1'='f(TF1)')),

Button("OK",Shutdown(['TF1']))

]]):
> Maplets[Display](GraderMaplet);
[image: image47.wmf][

]

"8"

> [image: image48.png]T Maplet - o8

Grader Maple

Enter hour of absent

Haurs:

Pass

] o

3/15/2006 12:33:49 PM

